
SAS To EXCEL: An Integrated Reporting System

Fran Cohen, Westat, Inc., Rockville, MD

ABSTRACT

Often we need to produce reports from a set of data.
Frequently the set of reports gets expanded upon or the
programmer is asked to modify the reports already written.
Instead of writing new SAS programs for each request, the
programmer can use this approach to efficiently and more
easily create camera-ready output. This paper describes an
integrated approach to creating formatted Microsoft Excel
reports from SAS data. A driver program builds all possible
combinations of specified analysis variables for a set of
reporting variables. Individual report programs read in pre-
formatted Excel templates specifying the variables to be
written on each report and write the Excel reports.
Commands to open, close, write to an Excel file, and save
as output Excel files are given in SAS via DDE. Since all
the processing is done at the front end, only minor changes
are needed to modify and add reports.

OVERVIEW

The first step in the system is to identify the class variables
used to construct the reporting variables. To accomplish
this, macro code is written to create summaries of the
reporting variables. A program identifies the groupings
used to increment the reporting variables by reading a file
called ‘levels’, meaning class variable levels. Each call to
the macro increments each reporting variable for each
value of the class variable, creating the output records,
which contain the values of the class variable along with
the summarized values of the reporting variables. After the
macro has been run for all the class variables specified, the
output observations are concatenated into one file, which is
used for all the reports.

In the second step, the Excel spreadsheet templates are
manually formatted for each report. A template can contain
a single or multiple sheets for each report.

In the third step, the individual SAS report programs are
written to transfer the data from the summary file to the
Excel spreadsheet. This program contains the code to read
in the pre-formatted Excel templates specifying the
variables to be written on each report and write the Excel
reports. Commands to open, close, write to an Excel file
and save as output Excel files are given in SAS via DDE.

Others have written about automated transfer of data from
SAS to Excel. Mumma (1999) compared DDE, PROC
IMPORT and other methods of transfer. Vyverman (2001,
2002) discussed in some detail DDE with regard to issuing
specific commands given from SAS to Excel. The emphasis
here is in creating one SAS database that will serve the
purpose of creating many reports with minor changes to the

main program. When a new report is requested with
additional class variables, all that is required is to add a
record to the levels file containing class variables and rerun
the program. When a new report is requested with
additional reporting variables, a line or two of code are
added to the incrementing macro and the program is rerun.
In each of these cases, a new template and SAS report are
written, usually with only minor changes from the previous
ones.

AN EXAMPLE

I created a fictitious data set about tennis players to
illustrate the system. Our data set will contain two class
variables: agegrp and sex of player. The reporting
variables will be type of headgear worn to aid in the sun
(sunglasses or hats) and type of gear worn to protect
the (aging!) body (ankle supports, elbow brace or
knee brace). Here is what the actual output data from
step one looks like after all three programs discussed
below have been run. This is a simplification of the original
application, which involved computing weighted and
unweighted counts and rates.

c_level agegrp sex c_sungl c_hats c_ankle c_elbow c_kneeb

0 1 4 1 0 4 1

0 2 2 3 0 4 1
0 3 3 2 0 2 3

0 4 3 2 1 2 2

0 5 4 1 0 1 4
1 1 1 2 1 0 3 0

1 1 2 2 0 0 1 1
1 2 1 2 0 0 2 0

1 2 2 0 3 0 2 1
1 3 1 2 1 0 1 2

1 3 2 1 1 0 1 1

1 4 1 1 1 0 1 1
1 4 2 2 1 1 1 1

1 5 1 2 1 0 1 2
1 5 2 2 0 0 0 2

The first column c_level, contains an identifier of the class
variables from the levels file. The next two columns,
agegrp and sex, are the class variables, and they are
followed by the five reporting variables: c_sungl,
c_hats, c_ankle, c_elbow, and c_kneeb. The counts
represented here are the incremented counts for each
value of the class variables: the number of people who use
sunglasses or hats, ankle supports, elbow braces or knee
braces when they play tennis. Let’s start with a simple
example of creating a report of “Types of Body Protection
by Age Group of Tennis Player”.

We need to increment our counts within the class variable
agegrp. Here is the levels file as it appears initially.

/*class variables*/
/*The file tells the SAS program which
variable groupings to use to increment
reporting variables. It contains parameters
for BY-variable processing levels.*/

/* The four parameters of
varnames,varfreqs,firstdotvar,level number
are passed to the macro that does the
incrementation. In this case the first
agegrp is passed to varnames, the second
agegrp is passed to varfreqs, the third
agegrp is passed to firstdotvar and the
identifier 0 is passed to level number.*/

agegrp,agegrp,agegrp,0,
/*age group of players*/

Each reporting variable in the report is to be incremented
within each agegrp. We have five categories of age group:
<20, 21-30,31-40,41-50 and 51+.

We might want the Excel table for Report 1 to look like this:

Age Group
 Ankle

Supports
Elbow
Brace

Knee
Brace

<20 0 4 1

21-30 0 4 1
31-40 0 2 3
41-50 1 2 2

51+ 0 1 4

How are we going to tell SAS which variables from which
observations in the SAS data set to write?

Vyverman (2001, 2002) has discussed formatting of Excel
worksheet cells using Microsoft Version 4 XML, or Macro
Language commands. This is another approach, but it is
difficult to find documentation of these commands. I
thought that perhaps I could use the VBA code to capture
commands, but as Vyverman (2001, 2002) notes this does
not work. An easier approach is for the programmer to use
Excel to manually format a table and save it for later use.
Once this Excel file is created, it is read each time the
reports are run.

The formatted template, Report1.xls, looks like this:

Age Group
 Ankle

Supports
Elbow
Brace

Knee
Brace

_age _c_ankle _c_elbow _c_kneeb

Note that in addition to the row headings, there are some
variables beginning with underscores. These identify the
actual variables that are required by this particular report. A
master array is created of all the variables in the system
that could appear in any report, and the variables specified
by the template identify which of those in particular, should
be written for a particular report. Since all the variables in
the array must be of the same type, the numeric variables
are converted to character by the driver program and that is
why in these examples they are preceded by a ‘c’ in the
templates and in the output file shown above. A PROC
FORMAT is used to assign a format to each of the
reporting variables, and this format is used to identify the
variable in the template. Here is the actual code from the
log of the report:

proc format;
value $master "c_sungl" = 1 "c_hats" = 2
"c_ankle" = 3 "c_elbow" = 4 "c_kneeb" = 5
"age" = 6 ;

Each of the reporting variables is identified in the format
statement. For example, the variable c_ankle has a value
of 3 in the value statement of the PROC FORMAT. Now
let’s look at some code in the Report 1 program.

Before writing to Excel, the SAS program issues
commands via DDE to open Excel. Since I created a new
report for each day of the week, I deleted the previous
week’s report before creating the new one.

%excelopen(&shellpath,&outpath,&report,&day
ofweek);

options noxwait noxsync;
x "f:\weswin2\dllshare\$exc97.exe";
run;
data _null_;
x = sleep(5);
run;
filename commands dde 'excel|system';
run;
x "erase
c:\tennisexample\output\report1\report1_mon
.xls";
run;

data _null_;
file commands;
put
"[open(""c:\tennisexample\report1.xls"")]";
run;

Now I subset the data to the records of interest for this
particular report.

data masterfile;
set
report.master_report(where=(left(c_level)="
0"));

/*Notice that ‘0’ identifies the records
reporting at the agegrp level.*/

%let numcolumns = 4;
/*how many columns will be filled*/

%let indataarea = r4c1:r4c4;
/*what to read from the input excel
template spreadsheet*/

%let outdataarea = r4c1:r8c4;
/* what area to fill in on the excel
template spreadsheet*/

The ContinuousFill macro contains the code to read in the
formatted template, identify the variables to write to the
report, matches and extracts them from the masterfile. DDE
commands will then be issued to save the output file and
close Excel via DDE.

Some key parts of the log illustrating the reading of the
template and writing to it are reprinted below with some
annotations.

%continuousfill(&report,&sheet,&numcolumns,
&indataarea,&outdataarea);

filename table dde "excel|[report1.xls]all
players!r4c1:r4c4" notab;
run;

data datashell;
informat column1 column2 column3 column4
$20.;

infile table dlm='09'x dsd missover;
/*This reads in the template for report 1.*/
input column1 column2 column3 column4 ;
run;

data datatable;
set masterfile(in=in1);

if in1 then set datashell point=nobs
nobs=nobs;

array mas c_sungl c_hats c_ankle c_elbow
c_kneeb age;

array columns column1 column2 column3
column4;

do i = 1 to 4;
if substr(columns(i),1,1) = '_' then do;
tempvar=upcase(substr(columns(i),2,19));
columns(i) = mas(put(tempvar,$master.));
end;
end;

drop i;
run;

This step illustrates how the template variables are linked
to the proper variables in the SAS dataset, referred to as
the masterfile. A temporary variable is created from the
column name in the template, after stripping the leading
underscore. For instance, when tempvar is equal to
c_ankle , the column associated with column 2 is equal to
the 3rd item in the master array, which happens to be equal
to c_ankle. When we look at the dataset we see that the
first five rows pertain to Report 1. For values of 1, 2, 3, and
5 of the agegrp variable, no one uses ankle supports. But
one person in agegrp 4 uses ankle supports. These
counts are shown in the Excel spreadsheet for Report 1.

filename table dde "excel|[report1.xls]all
players!r4c1:r8c4" notab;
run;

data _null_ ;
retain tab '09'x;

set datatable;
file table;

put column1 tab column2 tab column3 tab
column4 tab ;

/*The Excel file is written.*/
run;

Now we save the new report. Note that the template is
preserved, and a new file is saved each time the program
is run.

%excelclose(&outpath,&report,&dayofweek);

options noxwait noxsync;
filename commands dde 'excel|system';
run;

data _null_;
file commands;
put
"[save.as(""c:\tennisexample\output\report1
\report1_mon.xls"")]";
put '[quit]';
run;

Suppose we want to show Report 1 by sex as well as age
group. This can easily be accomplished. All we have to do
is add another instruction in the levels file to aggregate the
reporting variables by the agegrp (5) by sex (2)
combinations.

Here is the levels file as it appears with the new record.

agegrp,agegrp,agegrp,0,
/*age group of players*/
agegrp sex, agegrp*sex,sex,1,
/*age group by sex*/

In order to create a template for Report 2, the
Report1.xls template file is opened; another tab is
added; the one for ‘All Players’ is renamed so we now have
a sheet for ‘Male’ and a sheet for ‘Female’. The file is
saved as a new template, Report2.xls.

The Report 1 program only needs some minor
modifications to create this new report: the file is now
subset to the level 1 cases and the sex is specified for
each sheet. The only changes needed are shown in bold
italics. The program is saved as Report 2.

data masterfile;
set
report.master_report(where=(left(c_level)=
"1" and sex="&sexval"));

/*Notice that we are now subsetting to the
level 1 records for a particular sex.*/

%let numcolumns = 4;
%let indataarea = r4c1:r4c4;
%let outdataarea = r4c1:r8c4;

%continuousfill(&report,&sheet,&numcolumns,
&indataarea,&outdataarea);

The output for Report 2 follows:

Types of Body Protection by Age Group and Sex of Tennis
Player: Male

Age Group
 Ankle

Supports
Elbow
Brace

Knee
Brace

<20 0 3 0

21-30 0 2 0
31-40 0 1 2
41-50 0 1 1

51+ 0 1 2

Types of Body Protection by Age Group and Sex of Tennis
Player: Female

Age Group
 Ankle

Supports
Elbow
Brace

Knee
Brace

<20 0 1 1

21-30 0 2 1
31-40 0 1 1
41-50 1 1 1

51+ 0 0 2

Now suppose we decide we need to see all of the reporting
variables by agegrp and sex. Let’s create Report 3. No
additional levels are needed. All reporting variables have
been created by the driver program at the front end, so all
we need to do is modify the template from Report 2. We
create a template for Report 3 with the added columns for
the newly added reporting variables. The Report 3 program
can be used with only a modification to the number of
columns read and the number of columns written.

%let numcolumns = 6;
%let indataarea = r4c1:r4c6;
%let outdataarea = r4c1:r8c6;

The output for Report 3 follows:

What Tennis Players Use to Protect Themselves from Sun
and Wear and Tear by Age Group and Sex: Male

Age Group

 Hat Sunglasses Ankle
Supports

Elbow
Brace

Knee
Brace

<20 1 2 0 3 0

21-30 0 2 0 2 0
31-40 1 2 0 1 2
41-50 1 1 0 1 1

51+ 1 2 0 1 2

What Tennis Players Use to Protect Themselves from Sun
and Wear and Tear by Age Group and Sex: Female

Age Group

 Hat Sunglasses Ankle
Supports

Elbow
Brace

Knee
Brace

<20 0 2 0 1 1

21-30 3 0 0 2 1
31-40 1 1 0 1 1
41-50 1 2 1 1 1

51+ 0 2 0 0 2

In conclusion, a little planning at the front end goes a long
way in efficiency when multiple Excel report files are
desired.

Due to space limitations, I haven’t included all the code in
this paper, but will be glad to e-mail it to you.

DISCLAIMER: The contents of this paper are the work of
the author and do not necessarily represent the opinions,
recommendations, or practices of Westat.

ACKNOWLEDGEMENTS

The author would like to thank Brice Hart, Sharon
Hirabayshi, and Ian and Marianne Whitlock for their
insights and ideas that contributed to this paper.

CONTACT INFORMATION

Fran Cohen, Westat, Inc.
1650 Research Boulevard
Rockville, MD 20850
Email: cohenf1@westat.com

REFERENCES

Mumma, M.T. The Redmond to Cary Express- A
Comparison of Methods to Automate Data Transfer
Between SAS and Microsoft Excel. Proceedings of the 12th
Annual Northeast SAS Users Group Conference, 1999.

Vyverman, K. Using Dynamic Data Exchange to Export
Your SAS Data to MS Excel-Against all ODS, Part 1.
Proceedings of the 26th Annual SAS Users Group
International Conference, 2001.

Vyverman, K. Creating Custom Excel Workbooks from
Base SAS with Dynamic Data Exchange: A Complete
Walkthrough. Proceedings of the 27th Annual SAS Users
Group International Conference, 2002.

TRADEMARK NOTICE

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

